<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class="">
Let me repeat Bob’s answer here for the entire mailing list and add a few more comments of my own.
<div class=""><br class="">
</div>
<div class="">
<div style="margin: 0in; font-size: 11pt; font-family: Calibri, sans-serif;" class="">
</div>
<blockquote type="cite" class="">
<div style="margin: 0in; font-size: 11pt; font-family: Calibri, sans-serif;" class="">
Kasa,</div>
<div style="margin: 0in; font-size: 11pt; font-family: Calibri, sans-serif;" class="">
Depending on how the sample is prepared, the usual dominant broadening effect is from mustrain broadening not crystallite size. Highest resolution data (i.e. synchrotron diffractometer data) is best at distinguishing them and a wide scan is essential as well.
The uniaxial models must be aligned along the principal axis of the space group. Laboratory data can usually only do mustrain broadening; there is (usually) insufficient resolution to do meaningful size broadening. The model with the best fit is usually the
best one. Unusual samples are, well, unusual.</div>
<div style="margin: 0in; font-size: 11pt; font-family: Calibri, sans-serif;" class="">
Bob</div>
</blockquote>
<div class=""><br class="">
</div>
<div class="">For those who are new to this, crystallite size and microstrain are differentiated by the Q dependence of the peak broadening, with delta-Q and delta-Q/Q being constant for each, respectively. One can only tell the difference if one has discernible
peaks over a wide Q range. Further, peak shape parameters can interact with the background parameters. Also, one cannot get reliable sample broadening values if one refines the instrumental broadening parameters and the sample parameters together. </div>
<div class=""><br class="">
</div>
<div class="">In practice, except for high-resolution data (typically synchrotron & neutron) one will only be able to refine either crystallite size or microstrain, but not both. Which one to choose? Try each and see what fits the data better, but note that
if microstrain gets small or crystallite size gets large then the term has no effect and is not needed. </div>
<div class=""><br class="">
</div>
<div class="">The presence of anisotropic broadening is hard to spot by eye, so I am usually tempted to try the more complex models just before deciding that I am “done”* to see if the fit improves. If so, I keep it and if not I go back to the isotropic model.
Likewise, the LGmix parameter is very unlikely to improve things and leaving it fixed at 1 is usually the best bet, but if the peak fit does not look too good by eye, I might experiment with varying that to see if I get improvement and if not, I go back to
leaving it fixed at 1. </div>
<div class=""><br class="">
</div>
<div class="">Because people tend to fit with both microstrain and crystallite size broadening and because there can be some interaction between the balance between the amount of Lorentzian character in the peaks and where the background level is set, there
can be many different parameter sets that give about the same fit quality. This is why if one refines microstrain and crystallite size together and then increases the complexity of the model for one of the two, one can see a large change in the other parameter.
That is an indication that the model is overfit (has more parameters than the data support). </div>
<div><br class="">
</div>
<div>HTH,</div>
<div>Brian</div>
<div><br class="">
</div>
<div>* Note Peter Stephen’s famous comment about never being done. </div>
<div><br class="">
<blockquote type="cite" class="">
<div class="">On Jan 18, 2023, at 11:16 PM, kasa belachew via GSAS-II <<a href="mailto:gsas-ii@aps.anl.gov" class="">gsas-ii@aps.anl.gov</a>> wrote:</div>
<br class="Apple-interchange-newline">
<div class="">
<div dir="auto" class=""><span style="font-size:12pt;font-family:"times new roman","serif";color:rgb(17,17,17)" class="">GSAS-II computes the crystallite sizes (</span><span style="font-size:12.8px" class=""> </span><b style="font-size:12.8px" class=""><span style="font-size:12pt;font-family:'times new roman','serif'" class="">10<sup class="">-6</sup></span></b><span style="font-size:12.8px" class=""> </span><span style="font-size:12pt;font-family:"times new roman","serif"" class="">m)<span style="color:rgb(17,17,17)" class=""> in
three different (isotropic, uniaxial and ellipsoidal) and Microstrains</span></span><span style="font-size:12pt;font-family:"times new roman","serif"" class=""> in terms of the amount of lattice spread</span><span style="font-size:13.5pt;font-family:"segoe ui","sans-serif";color:rgb(68,68,68)" class="">, </span><span style="font-size:12pt;font-family:"times new roman","serif"" class="">unitless
fraction of Δd/d (or equivalently ΔQ/Q) times 10<sup class="">6</sup><span style="color:rgb(17,17,17)" class=""> (isotropic, uniaxial and generalized) arrangement.</span></span>
<div dir="auto" class=""><span style="font-size:12pt;font-family:"times new roman","serif"" class=""><span style="color:rgb(17,17,17)" class="">But, my question here is, </span></span></div>
<div dir="auto" class=""><span style="font-size:12pt;font-family:"times new roman","serif"" class=""><span style="color:rgb(17,17,17)" class="">1. What is the criteria to select the model for my material?</span></span></div>
<div dir="auto" class=""><font color="#111111" face="times new roman, serif" class=""><span style="font-size:16px" class="">2. Can we use all models for one material?</span></font></div>
<div dir="auto" class=""><font color="#111111" face="times new roman, serif" class=""><span style="font-size:16px" class="">Thanks </span></font></div>
</div>
_______________________________________________<br class="">
GSAS-II mailing list<br class="">
<a href="mailto:GSAS-II@aps.anl.gov" class="">GSAS-II@aps.anl.gov</a><br class="">
https://mailman.aps.anl.gov/mailman/listinfo/gsas-ii</div>
</blockquote>
</div>
<br class="">
</div>
</body>
</html>